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DIFFERENTIAL FORM OF THE UNIVERSAL EQUATION
OF THE LAMINAR BOUNDARY LAYER

N. G. Khislavskaya UDC 532.526.2

We propose a new approach to composing a universal equation of the laminar boundary layer
in generalized similarity variables.,

§1. The wide use of electronicdigital calculatorshas greatly reduced interest in approximate methods of; of
computation. However, the problem of establishing general rules to describe the effect of factors external to
the boundary layer (such as the velocity distribution at the outer boundary, blowing or suction velocities,
body surface temperatures, external magnetic field stresses,etc.) on terminal characteristics (friction stress,
heat-transfer coefficient, flow separation location, etc.) continues to be one of practical and fundamental signif-
icance. These rules express general tendencies of various processes such as flow drag, heat transfer, and
related motions in boundary layers.

The "generalized similarity method, " proposed in [1] by Loitsyanskii, makes it possible to examine
broad classes of problems of boundary-layer theory by transforming the boundary-layer equation to a "uni-
versal" generalized-similarity form requiring only a single numerical integration. The resulting tables of
solutions, prepared once and for all, express general rules and relationships among the basic characteristics
of the boundary layer.

§2. Inits initialform the generalized similarity method was first published in {1]. Its distinguishing
feature was that its basic universal equation was of integrodifferential form,in which differential and integral
functionals of the unknown solution were present. In the rather simple cases treated in that paper only minor
complications were encountered in numerically integrating the fundamental equation. Results of the integra-
tion and a corresponding bibliography can be found in [2].

The attempt to apply the method to more involved cases (nonstationary boundary layer, jets and wakes
in arbitrary pressure fields, etc.) showed that by reducing the universal equations to purely differential form
one could, in spite of the introduction thereby of an increase in the number of independent variables, signifi-
cantly simplify the form of the universal equation and aid in effecting the first stage of the method, namely,
that of deriving general rules. In the present paper we develop the basic notion involved in the transition of
the universal equation from an integrodifferential form to one of purely differential form, and we apply it to a
physically realistic and sufficiently general example of a two-dimensional high-speed boundary layer in a
homogeneous incompressible fluid; generalization of the notion to more involved motions is then perfectly
straightforward.

§3. Asadirect substitution of an affinely similar form of the stream function ¢ = Udy(y/8) into the
general Prandtl equation reveals, there appears in the equation a particular pair of conjugate parameters:
f1 =U'z, f; =Uz' which are explicit functions of x [U(x) is the speed at the outer edge of the boundary layer;
z =8%/v; 6 is a conditional "thickness" of the boundary layer; and the primes indicate differentiation with
respect to x|, thereby violating the universality of the new form of the equation. Introduction of these param-
eters into a number of the independent fby virtue of the arbitrariness of U(x)] variables, i.e., a transition
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408 404 0 404 908 F
Fig. 1. Dependence of { and H on f (curves 1, 2, 3, 4, 5,
and 6 are for values of f =1, 0.8, 0.6, 0.4, 0.2, and 0.0,
respectively); the solid curves indicate a locally similar ap-
proximation, while the dashed curves indicate a locally two-
parameter approximation.

to a generalized similarity form of the stream function ¢ = Udys(y/98, fi, f;), and then again substituting this
expression into the Prandtl equatmn, leads to the appearance of a "residual" consisting of a new pair of con-
jugate parameters: fy = UU gz, f =U2zz", and so forth. But the transition to two infinite sequences of
variables (the question as to the convergence of the method remains open), namely,

U

R e R ®

and to an expression for the stream function in the form
=UsD[; (f), (f]. n=y/d 2)

[we employ here the notation (f), (fk) for the sequences (f, fq,...) and (fi, f2, .) of the generalized simi-
larity parameters], enables us to transform the Prandtl equation, expressed in terms of the stream function
¥, into the following purely differential equation of the boundary layer in the generalized similarity variables:

3 12\ . & b \2 D(®, 0b/dy) = D(, aqb/an)]
-— l—{——] | = 0, . 3
+(h+ 5h)o 02 +f1[ ( )] 2[ +5,

e om D, f» D(n, fz)
In deriving this equation we have used the recursion relations

=k —1F + B e+ Frsns

Gy

U A}l'a = 6k =[(k— 1)—f1 +kf1]]Tk +fh+1 ’
which follow directly from the definition of ik and,f;{. To the equation (3) we adjoin the boundary conditions
(the overdot indicates differentiation with respect to )
G =B=0 for n=0,d—>1 for N—>00, D=S(n) for (fy) = (fuo) = const, (f,) = (Fo) = const. (5)

The first two boundary conditions refer to the case of the boundary layer on an impermeable solid wall;
the last condition displays the fact that &;(n) represents the solution of the self-similar Falkner—Skan prob-
lem

&+ (f +—; f) &, B, + f10 (1—B3) =0,

¢0=§f10=0,7|=0, 5150—>1,'r|——>-oo, 6)
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Fig. 2. Determination of the dependence
F(,f); &, H, f, f, and F are dimension~
less quantities.
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corresponding to the external velocity distribution U(x) =cx™. The constants f}, and fko are given by

ok ; (B)12
fko___mm(m—l)...(m——k“rI)IB\ﬁ)]k’
o= TV 0 ym. (k) BEN @
(m—+ 1)
2m
p= m41 "

a table of B(p) is given in [2].

The last row of the boundary conditions (5) represents the principal limitation to the generality of the
statement of boundary-layer theory problems with an arbitrarily assigned velocity profile in the "initial"
section of the layer (the problem of "continuation"). This restriction is deeply connected with the general-
ized similarity concept itself; to remove it would require further additional generalizations.

Equation (3), with the boundary conditions (5), constitutes a nonlinear third-order partial-differential
equation with the independent variables 7, (i), (fk); it possesses the property of universality in the sense
that it, and the boundary conditions corresponding to it, have one and the same form for arbitrary analytically
specified velocity distributions U(x) at the outer edge of the boundary layer.

Equation (3), subject to the boundary conditions (5), can be integrated once and for all on an electronic
digital computer, where, with confemporary machine potentialities, we can only speak of the "section" of the
equation corresponding to the value k =1, since, even in this case, the equation contains the three variables:

Tlafi’fl'

Thus, Eqg. (3), with the bougdary conditions (5), can be integrated numerically only in the simplest
approximation &k =1;/ =f, f{ =f):

3P 12\ . 0% 0P \?

| —fle 1—{2=

anaT(f+2f> 0n2+f{ ('671)]

_ f—( P PP 9P PO | 0D FP 9D azqs\)
on omof  of o’ om o of o2 )’

G=P=0 for n=0, D1 for 17— 00, ®)
@ =@,(n) for [ = f,= const, F =7, = const.

We speak of this as a full two-parameter approximation. If, in addition, we discard on the right side of Eq.
(8) derivatives with respect to the yariable f1, retaining it as a parameter (we speak of such an approxima-
tion as being local in the variable f;), we then obtain the following equation in a locally two-parameter approxi-

mation:
1.\ . & oD\l ./ 0D P D PD
—Fle R B _
+(f+ Qf) on? +f[ ( an ” i ( on omof  of on® > (9

3P
on?
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G=P=0 for 1=0, G—>1 for N — oo,
& =d,(n) forf=f,=const, f=f, = const.

In thg event that on the right side of Eq. (8) we discard derivatives with respect to both of the parameters f
and /', we shall have a locally similar approximation. In this approximation the solution of the equation is
readily obtainable with a simple application of a solution of the Falkner—Skan equation.

§4., Thentermwise integration of both sides of Eq. (8) with respectto 7 from 1= 0 to 1 = = yields, if we
take as the "thickness" §(x), the "momentum loss" 6", where

& (x) = (% (1 —%\)dy, (10)

0

the following K4&rmin integral relation expressed in the variables f and I

f=2—@+MA=F(FD, (11)
wherein
d(wU) 7 Lo r : &
— @0 f)H=\(1—d)dn=— . 12
- [ =0 iR H= [0 —dan= G | (12)

b
Outwardly, the integral relation (11) has the usual form, but now the variables ¢ and H in it are functions of

the variables f and . Replacing f and f by their expressions f =U'z, f =Uz', we obtain an ordinary non-
linear differential equation in

13
V() 'ZL = F (U2, Uz**). (13)
X

The initial condition z** = z}* at x = x; expresses integrally the distribution of velocities at the initial sec-
tion of the boundary layer.

Equations (12), for the case in question of a high-speed boundary layer, constitute the desired general
rules for the relationship involving the "reduced" exit characteristics: { (the reduced frictional stress on the
surface), H (the degree of "completeness" of the velocity profiles at sections of the boundary layer), and the
parameters f and 7, which describe features of the geometric shape of the curves for the distribution of the
"external™ velocity and for the "thickness" of the boundary layer. Solution of the ordmary dlfferentxal equa-
tion (13) in a specific case where U(x) is specified [compatible with use of tables of & f, f), & (0; Y )
makes it possible to obtain an approximate solution of a particular given problem.

§5, It is easy to establish a relationship between the new and the old methods of solving the boundary-~
layer equation. Reduction of the system of variables ( fi, fk) to the "truncated" system (f), 1) 1), and then
"localization™ with respect to f {» reduces Eg. (3) to the form

BP aqb ob ﬂ \ NP TG
WAL ik T , 14
on® )hl f‘[ ( an . D@, ) 14)

d=p=0 for =0, d—>1 for n—>oo,
@ = Dy (n) for [, = fuo=const, f; = [ = const.

Equation (14) constitutes an integrodifferential (see [1]) form of the universal equation in which {[(fK)] is a
differential functional and H[f)] an integral functional of the desired solution. :

Thus, the old method is a particular case of the new method and corresponds to a "truncation™ over all
the "conjugate" variables (fk) , except for the first variable f 1» and then a localization with respect to this

variable.

The new method is more general but, owing to limitations of electronic digital computers, is apparently
applicable only in the particular case corresponding to the value k =1 [Eq. (8)]. This type of equation can be
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used even in the more general case when solving the universal equation for motions close to being self-similar,
when there is an effective method for expanding in series (see [3]) about the values (f}y, fk) corresponding to
the self-similar Falkner—Skan equation.

§6. We obtained a numerical solution of Eq. (3) in the locally similar and two-parameter cases, the
approximations being local with respect to the parameter f;. The integration was carried out on the M~220
electronic digital computer by the method of finite differences.

Figure 1 shows the solution in the form of the dependence of ¢ and H on f for various fixed values of the
parameter f in both approximations; in Fig. 2 the solution is shown for the combination F = 2[¢ — (2 +H) f] in
the locally similar approximation (the corresponding graph in the locally two-parameter approximation is
similar).

The locally similar approximation of the "universal® equation (3) corresponds to the locally one-param-
eter approximation in the old method (Kochin—ZILoitsyanskii; curves I); the two-parameter approximation,
local with respect to the parameter f 1 corresponds to the complete one-parameter approximation (Howarth;
curves II). The solution obtained by the new method can be compared with the solution obtained in [1]. To do
this, we need fo solve, in accordance with the new method, the transcendental equation

F=F. P as)

the latter makes it possible to relate the variables f and / whenever the solution of the universal equation, in
this or another approximation, is known. This is best done graphically by taking 7 along the axis of abscissas
and F along the axis of ordinates and then taking as the solution the points of this plane lying on the angle bi~
sector (see Fig. 2). As a result, for each approximation we will have a dependence of / on f.

Upon comparing the distributions & [f, £ (f)] = £(f), HIf, 7 (N] = H{), FIf,f (f)] = F(f) with the locally
similar solution and the complete one-parameter solution by the old method, we see that they are equivalent.

We remark that the existing two-parameter solution [2] of the old method corresponds to the new four-
parameter solution, "fruncated" in f, and "local” with respect to f,.

Our main results are the following: the derivation of a purely differential form of the universal equation
and the establishing of a relationship between the old and the new methods.

Along with this, we point out the completely rational way of introducing the parameters, as described
in Sec. 3.

Upon considering the various approximate forms of the universal equation, obtained through "truncation”
and "localization, " we see that there are two ways of solving the problem: reducing the equation to an integro-
differential form (the "old" method) or to a purely differential form (the "new" method). In physically involved
problems (nonstationary boundary layer, a case of several arbitrary velocity scales, and so forth) the new
method is preferable.

NOTATION

X, y, longitudinal and transverse coordinates in a boundary layer; 1, dimensionless-transverse coordi-
nate; U, velocity on the external boundary of a boundary layer; ¢, stream-function; ®, dimensionless stream-~
function; u, velocity projection into the x axis in a boundary layer; v, kinematic viscosity coefficient; §(x),
some conventional thickness of a boundary layer; 6*, displacement thickness; 8**, momentum thickness; H,
characteristic function; ¢, reduced friction coefficient; f, fk, dimensionless parameters.
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