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D I F F E R E N T I A L  F O R M  O F  T H E  U N I V E R S A L  E Q U A T I O N  

O F  T H E  L A M I N A R  B O U N D A R Y  L A Y E R  

N. G. Khislavskaya UDC 532.526.2 

We propose  a new approach  to composing a un iversa l  equation of the l amina r  boundary l aye r  
in genera l i zed  s imi l a r i t y  va r i ab l e s .  

w The wide use of electronic digital ealeulators has greatly reduced interest in approximate methods of; of 
computation. However, the problem of establishing general rules to describe the effect of factors external to 
the boundary layer (such as the velocity distribution at the outer boundary, blowing or suction veloeities, 
body surfaee temperatures, external magnetic field stresses,etc.) on terminal characteristics (friction stress, 
heat-transfer eoeffieient, flow separation location, etc.) continues to be one of praetical and fundamental signif- 
icance. These rules express general tendencies of various proeesses such as flow drag, heat transfer, and 
related motions in boundary layers. 

The "generalized similarity method, " proposed in [i] by Loitsyanskii, makes it possible to examine 
broad classes of problems of boundary-layer theory by transforming the boundary-layer equation to a "uni- 
versal" generalized-similarity form requiring only a single numerical integration. The resulting tables of 
solutions, prepared once and for all, express general rules and relationships among the basic eharacteristies 
of the boundary layer. 

w In i ts  init ial  f o r m  the genera l i zed  s imi l a r i t y  method was f i r s t  published in [1]. I ts  dist inguishing 
fea ture  was that i ts  basic  un ive r sa l  equation was of in tegrodi f ferent ia l  f o r m , i n  which di f ferent ia l  and in tegra l  
functionals of the unknown solution were  p r e sen t .  In the r a t h e r  s imple  cases  t r ea t ed  in that  pape r  only minor  
compl ica t ions  were  encountered in numer ica l ly  in tegra t ing the fundamental  equation. Resul ts  of the i n t eg ra -  
tion and a cor responding  bibl iography can be found in [2]. 

The a t tempt  to apply the method to m o r e  involved ca se s  (nonstationary boundary l aye r ,  je ts  and wakes 
in a r b i t r a r y  p r e s s u r e  f ie lds ,  e tc . )  showed that  by reducing the un ive r sa l  equations to pure ly  d i f ferent ia l  f o r m  
one could, in spi te  of the introduct ion the reby  of an i n c r e a s e  in the number  of independent v a r i a b l e s ,  s ignif i -  
cantly s impl i fy  the f o r m  of the un ive r sa l  equation and aid in effecting the f i r s t  s tage of the method,  namely ,  
that  of der iving gene ra l  ru l e s .  In the p re sen t  pape r  we develop the basic  notion involved in the t rans i t ion  of 
the un ive r sa l  equation f r o m  an in tegrodi f ferent ia l  f o r m  to one of pure ly  d i f ferent ia l  f o rm ,  and we apply it to a 
phys ica l ly  r ea l i s t i c  and sufficiently gene ra l  example  of a two-d imens iona l  h igh-speed  boundary l ayer  in a 
homogeneous i ncom pres s i b l e  fluid; genera l iza t ion  of the notion to m o r e  involved motions is then per fec t ly  
s t r a igh t fo rward .  

w As a d i r ec t  substi tut ion of an affinely s im i l a r  f o r m  of the s t r e a m  function ~ = U5~l(y/5 ) into the 
gene ra l  Prandt l  equation r e v e a l s ,  the re  appea r s  in the equation a pa r t i eu l a r  pa i r  of conjugate p a r a m e t e r s :  
f l  = U ' z ,  J~ = Uz '  which a re  explici t  functions of x [U(x) is the speed at the outer  edge of the boundary layer ;  
z = 52/ , ;  5 is a conditional " th ickness"  of the boundary layer ;  and the p r i m e s  indicate different ia t ion with 
r e s p e c t  to x], thereby  violating the universa l i ty  of the new fo rm of the equation. Introduction of these  p a r a m -  
e t e r s  into a number  of the independent [by v i r tue  of the a r b i t r a r i n e s s  of U(x)] v a r i a b l e s ,  i . e . ,  a t rans i t ion  
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Fig. 1. Dependence of ~ and H o n f  (curves 1, 2, 3, 4, 5, 
and 6 are for values o f f  = 1, 0.8, 0.6, 0.4, 0.2, and 0;0, 
respectively); the solid curves indicate a locally s imi lar  ap- 
proximation, while the dashed curves  indicate a locally two- 
pa ramete r  approximation. 

to a general ized s imi lar i ty  form of the s t r e a m  function r = Uh@2(y/5, f l ,  ~1), and then again substituting this 
express ion into the Prandtl  equation, leads to the appearance of a "residual"  consisting of a new pair  of con- 
jugate pa ramete r s :  f2 = UU"z2,372 = U2zz", and so forth.  But the transi t ion to two infinite sequences of 
var iables  (the question as to the convergence of the method remains  open), namely,  

fh =Uk-~ ~dkU zk, fk ----Ukz~-~ dx ~ d~z ( k =  I, 2,...) (1) 

and to an express ion for  the s t r eam function in the form 

----Uh~b[n; (fh), (~k)], n == g/6 (2) 

[we employ here  the notation (fk), ~Tk) for  the sequences (fl, f 2 , - . . )  and (f-~, f 2 , . . . ) o f  the general ized s imi-  
lar i ty pa rame te r s ] ,  enables us to t r ans fo rm the Prandtl  equation, expressed  in t e rms  of the s t r eam function 
$, into the following purely differential  equation of the boundary layer  in the general ized s imilar i ty  variables:  

a3r ( 1 ) 0 ~  [ (0_~_) 2] ~ [  D(cP'c3cp/OTI)-}-ohD(r 1 (3) 
aM ~ -q- f~q- -~ f l  r an ~ -kf~ 1 (,) Oh D(n, fh) D(n, fh) 

In deriving this equation we have used the recurs ion  relat ions 

U 
U' f~f'k ----- Oh ---- [(k - -  1) fl -]- ~1] fh -k fh+.l, 

(4) 
U - - - '  

which follow direct ly  f rom the definition of fk and'~k" To the equation (3) we adjoin the boundary conditions 
(the overdot  indicates differentiation with respec t  to 7) 

~ b = ~ b = 0  for ~l=0,}_b--*-I for ~l--~oo, ~5=(P0(~l) for (f~)=(f~o)=Const, (fh)=~k0)=const. (5) 

The f i r s t  two boundary conditions r e fe r  to the case  of the boundary layer  on an impermeable  solid wall; 
the last  condition displays the fact that r (7) r epresen t s  the solution of the s e l f - s imi l a r  Falkner--Skan prob-  
lem , ) r (f,0 + L0 r + 1,0 ( 1 - ~ )  --0, 

r ~=o ,  r ~--,-~, (6~ 
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Fig .  2. D e t e r m i n a t i o n  of the dependence  
F(f, .f-);  ~, H , f ,  )7, and F a r e  d i m e n s i o n -  
l e s s  quant i t ies .  

c o r r e s p o n d i n g  to the ex te rna l  ve loc i ty  d i s t r ibu t ion  U (x) = cx TM. The cons tan ts  fk0 and fk0 a r e  g iven by 

2 k 
fko -- - -  m (m - -  I ) . . .  (m--  k § 1) [S ([3)1 ~ 

(m + 1) k 

fho = (--  l~2k ( - -  1) m . . .  (m -k k - -  2)[B ([3)1 ~, 
(m + 1) k .m 

2m 
m ,-t- 1 

a table  of B(fi) is g iven  in [2]. 

The las t  row of the boundary  condi t ions  (5) r e p r e s e n t s  the p r inc ipa l  l imi ta t ion  to the genera l i t~  of  the 
s t a t e m e n t  of b o u n d a r y - l a y e r  t h e o r y  p r o b l e m s  with an a r b i t r a r i l y  a s s igned  ve loc i ty  prof i le  in the " i l~ t ia l "  
sec t ion  of  the l a y e r  (the p r o b l e m  of "cont inuat ion") .  This  r e s t r i c t i o n  is  deeply  connec ted  with the g e n e r a l -  
i zed  s i m i l a r i t y  concep t  i t se l f ;  to  r e m o v e  it would r equ i r e  f u r t h e r  addi t ional  g e n e r a l i z a t i o n s .  

Equat ion  (3), with the boundary  condi t ions  (5), cons t i tu tes  a non l inea r  t h i r d - o r d e r  p a r t i a l - d i f f e r e n t i a l  
equat ion with the independent  va r i ab le s  ~, (fk), OYk); it p o s s e s s e s  the p r o p e r t y  of un ive r sa l i t y  in the  sense  
that  i t ,  and the boundary  condi t ions  c o r r e s p o n d i n g  to i t ,  have one and the s a m e  f o r m  fo r  a r b i t r a r y  ana ly t ica l ly  
spec i f ied  ve loc i ty  d i s t r ibu t ions  U(x) at the ou t e r  edge of the boundary  l aye r .  

Equat ion (3), sub jec t  to the boundary  condi t ions  (5), can  be in t eg ra t ed  once and fo r  all on an e l ec t ron ic  
digi ta l  c o m p u t e r ,  w h e r e ,  with c o n t e m p o r a r y  mach ine  po ten t ia l i t i es ,  we can only speak  of  the " sec t ion"  of  the 
equat ion c o r r e s p o n d i n g  to the value k = 1, s i nce ,  even in this  c a s e ,  the equation contains  the t h r ee  v a r i a b l e s :  

~ , f l ,  f l .  
Thus ,  Eq.  (3), with t h e b o u n d a r y  condi t ions  (5), can  be i n t eg ra t ed  n u m e r i c a l l y  only in the s i m p l e s t  

app rox ima t ion  (k = 1; fl  = f ,  f l  = f )  : 

0'2  + ( f+  02| - (  a| 

a,1 o,lof af off ~ + 011 o,laf o f  o~ ~ ' 

r  for Y]~-~-O, _~---~I for 'q----~oo, 

~b = r ('1) for f = fo = COnSt, f = fo = const. 

(s) 

We speak  of this  as  a full t w o - p a r a m e t e r  app rox ima t ion .  
(8) de r i va t i ve s  with r e s p e c t  to the va r i ab l e  f l ,  r e ta in ing  
t ion as  being loca l  in the va r i ab le  ~ ), we then obtain  the 
mar ion:  

If,  in addi t ion,  we d i s c a r d  on the r ight  s ide of  Eq.  
i t  as  a p a r a m e t e r  (we speak  of  such  an a p p r o x i m a -  
fol lowing equat ion in a loca l ly  t w o - p a r a m e t e r  app rox i -  

;1 ( ) 
= f f  0~b 0:q) 0~b 02r 

c%] O~tO [ Of 0~12 (9) 
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r  for ~]--0, q6--+l for ~l-+oo, 

r = ~ o  (~) for [ = f0 = cons t ,  f = [0 = cons t .  

In the event that on the r ight  side of Eq. (8) we d i sca rd  de r iva t ives  with r e spec t  to both of the p a r a m e t e r s  f 
and f ,  we shal l  have a locally s i m i l a r  approximat ion .  In this approximat ion  the solution of the equation is 
readi ly  obtainable with a s imple  applicat ion of a solution of the Fa lkner - -Skan  equation. 

w Then t e r m w i s e  in tegrat ion of both s ides of Eq. (8) with r e spec t  to ~ f rom ~ = 0 to ~ = ~ yields ,  if we 
take as the " th ickness"  5(x), the " m o m e n t u m  loss"  6 ~*, where  

U /2 ~ 

0 

the following K~rman in tegra l  re la t ion  e x p r e s s e d  in the v a r i a b l e s f  and f :  

wherein  

[=  2 l~ -- (2 + H) fl = F (f, [), 

[ a (u/U) 1 i ~* e =  L j =o = , (o;  f,7) H= (1-  = ~ . 

0 

(Io) 

(11) 

(12) 

Outwardly,  the in tegra l  re la t ion  (11) has the usual fo rm,  but now the var iab les  ~ and H in it a re  functions of 
the va r i ab l e s  f and f .  Replacing f and f by the i r  express ions  f = U 'z ,  f : Vz ' ,  we obtain an ord inary  non- 
l inear  d i f ferent ia l  equation in 

dz** 
V (x) = F (U' z**, Uz**'). 0_3) 

dx  

The init ial  condition z** = z~* at x = x 0 e x p r e s s e s  in tegra l ly  the distr ibution of veloci t ies  at the init ial  s e c -  
tion of the boundary l aye r .  

Equations (12), for  the case  in question of a h igh-speed boundary l aye r ,  const i tute the des i red  genera l  
ru les  for  the re la t ionship  involving the " reduced"  exit cha rac t e r i s t i c s :  ~ (the reduced fr ic t ional  s t r e s s  on the 
su r face ) ,  H (the degree  of "comple teness"  of the veloci ty  prof i les  at sect ions of the boundary layer) ,  and the 
p a r a m e t e r s  f and f ,  which desc r ibe  f ea tu res  of the geomet r i c  shape of the cu rves  for  the distr ibution of the 
"ex te rna l"  veloci ty and for  the " th ickness"  of the boundary layer .  Solution of the ord inary  di f ferent ia l  equa-  
tion (13) in a specif ic  case  where  U(x) is specif ied [compatible with use  of tables of r (0; f ,  f ) ,  r (0; f ,  )7)] 
makes  it poss ib le  to obtain an approx imate  solution of a pa r t i cu la r  given p rob lem.  

w It is easy  to es tab l i sh  a re la t ionship  between the new and the old methods of solving the boundary-  
l aye r  equation. Reduction of the s y s t e m  of va r i ab l e s  ( f k ,  fk)  to the " t runcated"  sys t em bek, )71 ), and then 

m 

"local izat ion" with r e spec t  to f ~ ,  reduces  Eq. (3) to the fo rm 

OSch _ [ ~ _ ( 1 - v H ) [ 1 ] c P  O~<p f1[1 (0--0~-)~ ] ~ D(cp' OcP"O~l) 
0,13 ' - - t h e  - -  - -  = " O h  D ( ~ ,  [ h ~  ' ( 1 4 )  

(k)  

(J)=~=O for ~=0, ~--,-I for ~--~c~, 

qb = r (q) for [1 = flo = const, f~ = [1o = const. 

Equation (14) const i tu tes  an in tegrodi f ferent ia l  (see [1]) f o rm of the un iversa l  equation in which ~ [(fk)] is a 
d i f ferent ia l  functional and H DCk] an in tegra l  functional of the des i red  solution. 

Thus ,  the old method is a pa r t i cu l a r  case  of the new method and co r r e sponds  to a " t runcat ion" over  all  
the "conjugate" va r i ab les  OYk), except  for  the f i r s t  v a r i a b l e f  1, and then a localization with r e spec t  to this 

va r iab le .  

The new method is m o r e  gene ra l  but, owing to l imitat ions of e lec t ronic  digital compu te r s ,  is  apparent ly  
appl icable  only in the pa r t i cu l a r  case  cor responding  to the value k = 1 [Eq. (8)]. This type of equation can be 
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used even in the m o r e  genera l  case  when solving the un iversa l  equation for  motions c lose  to being s e l f - s i m i l a r ,  
when the re  is an effect ive method for  expanding in s e r i e s  (see [3]) about the values (fk0, fk0) cor responding  to 
the s e l f - s i m i l a r  Fa lkner - -Skan  equation. 

w We obtained a numer i ca l  solution of Eq. (3} in the local ly  s i m i l a r  and t w o - p a r a m e t e r  cases ,  the 
approximat ions  being local  with r e s p e c t  to the p a r a m e t e r  f l .  The in tegra t ion  was c a r r i e d  out on the M-220 
e lec t ronic  digital  compute r  by the method of finite d i f fe rences .  

F igure  1 shows the solution in the f o r m  of the dependence of ~ and H on f for  var ious  fixed values of the 
p a r a m e t e r  f in both approximat ions ;  in Fig.  2 the solution is shown for  the combinat ion F = 2 [~ - (2 + H ) f ]  in 
the local ly  s i m i l a r  approximat ion  (the cor responding  graph  in the locally t w o - p a r a m e t e r  approximat ion is 
s imi l a r ) .  

The local ly s i m i l a r  approximat ion  of the "un iversa l "  equation (3) co r responds  to the locally o n e - p a r a m -  
e t e r  approx imat ion  in the old method (Kochin--Loitsyanski i ;  curves  I); the t w o - p a r a m e t e r  approximat ion ,  
local with r e s p e c t  to the p a r a m e t e r  f l ,  co r r e sponds  to the complete  o n e - p a r a m e t e r  approximat ion  (Howarth; 
curves  II).  The solution obtained by the new method can be compa red  with the solution obtained in [1]. To do 
th is ,  we need to s o l v e ,  in accordance  with the new method,  the t ranscendenta l  equation 

�9 [ =  P (~, [); (15) 

the l a t t e r  makes  it poss ib le  to re la te  the va r iab les  f and f whenever  the solution of the un iversa l  equation, in 
this o r  another  approximat ion ,  is known. This is bes t  done graphica l ly  by taking f along the axis of a b s c i s s a s  
and F along the axis of ordinates  and then taking as the solution the points of this plane lying on the angle b i -  
s ec to r  (see Fig.  2). As a r e su l t ,  for  each  approximat ion  we will have a dependence o f f  on f .  

Upon compar ing  the dis t r ibut ions ~ If ,  f ( f ) ]  = ~ (f), H[f,  f ( f ) ]  = H(f) ,  F i r , f  (f)] = F(f) with the locally 
s i m i l a r  solution and the complete  o n e - p a r a m e t e r  solution by the old method,  we see  that they a r e  equivalent.  

We r e m a r k  that  the exist ing t w o - p a r a m e t e r  solution [2] of the old method co r re sponds  to the new four -  
p a r a m e t e r  solut ion,  " t runcated"  in f 2  and "local"  with r e spec t  to f l .  

Our main resu l t s  a r e  the following: the der iva t ion  of a pure ly  di f ferent ia l  f o r m  of the un ive r sa l  equation 
and the es tabl ishing of a re la t ionship  between the old and the new methods.  

Along with th i s ,  we point out the comple te ly  ra t ional  way of introducing the p a r a m e t e r s ,  as descr ibed  
in Sec. 3. 

Upon consider ing the var ious  approx imate  fo rms  of the un iversa l  equation, obtained through %runcation" 
and "local izat ion,  " we see  that the re  a r e  two ways of solving the problem:  reducing the equation to ~m in tegro-  
di f ferent ia l  f o r m  (the "old" method) or  to a pure ly  different ia l  f o r m  (the "new" method).  In physical ly  involved 
p rob l ems  (nonstationary boundary l aye r ,  a case  of s e v e r a l  a r b i t r a r y  veloci ty s c a l e s ,  and so forth) the new 
method is  p r e f e r a b l e .  

NOTATION 

x, y ,  longitudinal and t r a n s v e r s e  coordinates  in a boundary layer ;  U, d i m e n s i o n l e s s - t r a n s v e r s e  coord i -  
nate; U, veloci ty on the ex te rna l  boundary of a boundary layer ;  r s t ream-func t ion ;  ~, d imens ionless  s t r e a m -  
function; u, veloci ty  projec t ion  into the x axis in a boundary layer ;  ~, k inemat ic  v i scos i ty  coefficient;  6 (x), 
some conventional  th ickness  of a boundary layer ;  5" ,  d i sp lacement  th ickness;  5"*,  momentum thick~ess;  H, 
cha r ac t e r i s t i c  function; ~, reduced fr ic t ion coefficient;  fk, f k ,  d imens ion less  p a r a m e t e r s .  
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